Back to Nodes

Sogni AI

Last updated Nov 3, 2025

n8n community node for Sogni AI image and video generation

281 Weekly Downloads
346 Monthly Downloads

Included Nodes

Sogni AI

Description

n8n-nodes-sogni

Enhanced n8n Community Node for Sogni AI Image & Video Generation

Generate AI images and videos using Sogni AI Supernet directly in your n8n workflows with full ControlNet support for guided image generation and video generation capabilities.

This node pulls from your personal Sogni accountโ€”sign up for free to get 50 free Render credits per day. Under the hood, the project utilizes the @sogni-ai/sogni-client-wrapper, which is built on top of the official @sogni-ai/sogni-client SDK.

Example n8n workflow using the Sogni node

๐Ÿ†• What’s New

๐ŸŽฌ Video Generation Support (v1.2.0)

  • Generate AI videos with customizable frames, FPS, and resolution
  • MP4 video output format
  • Automatic video download as binary data
  • Configurable video parameters (frames, guidance, steps)
  • Dedicated video model selection
  • ๐Ÿ“ฅ Automatic Image Download

  • Download generated images as binary data
  • Prevents 24-hour URL expiry issues
  • Proper MIME type handling
  • Enabled by default for reliability
  • ๐Ÿ”‘ Enhanced AppId Management

  • Auto-generates unique appId per execution
  • Prevents WebSocket socket collisions
  • Supports concurrent workflow runs
  • Manual override still available
  • โš™๏ธ Improved Defaults

  • Default network: fast (quicker generation)
  • Timeout defaults by network when not set: fast = 60s, relaxed = 600s
  • Default token type: spark
  • Download images: enabled by default
  • โœจ Full ControlNet Support

  • 15 ControlNet types supported (canny, scribble, lineart, openpose, depth, and more)
  • Guide image generation with control images
  • Full parameter control (strength, mode, guidance timing)
  • See ControlNet Guide for details
  • Features

    Resources & Operations

    #### Image Resource

  • Generate: Create AI images with optional ControlNet guidance
  • #### Video Resource

  • Generate: Create AI videos with customizable parameters
  • #### Model Resource

  • Get All: List all available models
  • Get: Get specific model details
  • #### Account Resource

  • Get Balance: Check SOGNI and Spark token balance
  • Installation

    Option 1: Community Nodes UI (Recommended)

    1. In n8n, open Settings โ–ธ Community Nodes
    2. Select Install
    3. Enter n8n-nodes-sogni
    4. Confirm the installation (restart n8n if prompted)

    Option 2: Manual Installation

    Run in your n8n installation directory

    npm install n8n-nodes-sogni

    Restart your n8n instance after installation

    Configuration

    1. Add Credentials

    1. In n8n, go to Credentials
    2. Click Add Credential
    3. Search for “Sogni AI”
    4. Enter your credentials:
    Username: Your Sogni account username
    Password: Your Sogni account password
    App ID: (Optional) Leave empty for auto-generation

    2. Add Node to Workflow

    1. Create or open a workflow
    2. Click + to add a node
    3. Search for “Sogni AI”
    4. Select the node and configure

    Basic Usage

    > ๐Ÿ’ก Tip: You can import example workflows directly into n8n! Create a new workflow, click the โ‹ฎ (three dots) in the top right corner, select Import from File…, and choose a sample workflow from the ./examples folder.

    Simple Image Generation

    {
      "resource": "image",
      "operation": "generate",
      "modelId": "flux1-schnell-fp8",
      "positivePrompt": "A beautiful sunset over mountains",
      "network": "fast",
      "additionalFields": {
        "negativePrompt": "blurry, low quality",
        "steps": 20,
        "guidance": 7.5,
        "tokenType": "spark",
        "downloadImages": true
      }
    }
    

    ControlNet-Guided Generation

    {
      "resource": "image",
      "operation": "generate",
      "modelId": "flux1-schnell-fp8",
      "positivePrompt": "A fantasy castle, magical, glowing",
      "network": "fast",
      "additionalFields": {
        "enableControlNet": true,
        "controlNetType": "canny",
        "controlNetImageProperty": "data",
        "controlNetStrength": 0.7,
        "controlNetMode": "balanced",
        "steps": 20,
        "downloadImages": true
      }
    }
    

    Video Generation

    {
      "resource": "video",
      "operation": "generate",
      "videoModelId": "wanv2.2-14b-fp8t2v_lightx2v",
      "videoPositivePrompt": "A serene waterfall flowing through a lush green forest",
      "videoNetwork": "fast",
      "videoAdditionalFields": {
        "videoSettings": {
          "frames": 81,
          "fps": 16,
          "steps": 4,
          "guidance": 7.5
        },
        "output": {
          "downloadVideos": true,
          "outputFormat": "mp4",
          "width": 640,
          "height": 640
        },
        "advanced": {
          "tokenType": "spark",
          "timeout": 300000
        }
      }
    }
    

    ControlNet Types

    All 15 ControlNet types are supported:

    | Type | Description | Best For |
    |——|————-|———-|
    | canny | Edge detection | Structure preservation |
    | scribble | Hand-drawn sketches | Sketch to image |
    | lineart | Line art extraction | Clean line drawings |
    | lineartanime | Anime line art | Anime/manga style |
    | softedge | Soft edge detection | Artistic control |
    | shuffle | Composition transfer | Layout preservation |
    | tile | Tiling patterns | Seamless textures |
    | inpaint | Masked area filling | Object removal/editing |
    | instrp2p | Instruction-based editing | Text-guided edits |
    | depth | Depth map | 3D structure |
    | normalbae | Normal map | Surface details |
    | openpose | Pose detection | Human pose transfer |
    | segmentation | Semantic segmentation | Layout control |
    | mlsd | Line segment detection | Architecture |
    | instantid | Identity preservation | Face consistency |

    See ControlNet Guide for detailed usage instructions.

    Parameters

    Required Parameters

    | Parameter | Type | Description |
    |———–|——|————-|
    | Model ID | string | AI model to use (e.g., flux1-schnell-fp8) |
    | Positive Prompt | string | What you want to generate |
    | Network | options | fast (SOGNI tokens) or relaxed (Spark tokens) |

    Optional Parameters (Additional Fields)

    | Parameter | Type | Default | Description |
    |———–|——|———|————-|
    | Negative Prompt | string | “” | What to avoid |
    | Style Prompt | string | “” | Style description |
    | Number of Images | number | 1 | How many images (1-10) |
    | Steps | number | 20 | Inference steps (1-100) |
    | Guidance | number | 7.5 | Prompt adherence (0-30) |
    | Token Type | options | spark | spark or sogni |
    | Output Format | options | png | png or jpg |
    | Download Images | boolean | true | Download as binary data |
    | Size Preset | string | “” | Size preset ID |
    | Width | number | 1024 | Custom width (256-2048) |
    | Height | number | 1024 | Custom height (256-2048) |
    | Seed | number | random | Reproducibility seed |
    | Timeout | number | 600000 | Max wait time (ms) |

    ControlNet Parameters

    | Parameter | Type | Default | Description |
    |———–|——|———|————-|
    | Enable ControlNet | boolean | false | Enable ControlNet |
    | ControlNet Type | options | canny | Type of ControlNet |
    | Control Image Property | string | data | Binary property name |
    | Strength | number | 0.5 | Control strength (0-1) |
    | Mode | options | balanced | balanced / promptpriority / cnpriority |
    | Guidance Start | number | 0 | When to start (0-1) |
    | Guidance End | number | 1 | When to end (0-1) |

    Video Generation Parameters

    #### Required Parameters
    | Parameter | Type | Description |
    |———–|——|————-|
    | Video Model ID | string | AI model to use for video generation |
    | Video Positive Prompt | string | What you want in the video |
    | Video Network | options | fast or relaxed |

    #### Optional Video Parameters

    | Parameter | Type | Default | Description |
    |———–|——|———|————-|
    | Negative Prompt | string | “” | What to avoid in video |
    | Style Prompt | string | “” | Video style description |
    | Number of Videos | number | 1 | How many videos (1-4) |
    | Frames | number | 30 | Number of frames (10-120) |
    | FPS | number | 30 | Frames per second (10-60) |
    | Steps | number | 20 | Inference steps (1-100) |
    | Guidance | number | 7.5 | Prompt adherence (0-30) |
    | Output Format | options | mp4 | Currently only mp4 is supported |
    | Download Videos | boolean | true | Download as binary data |
    | Width | number | 512 | Video width (256-1024) |
    | Height | number | 512 | Video height (256-1024) |
    | Timeout | number | auto | Max wait time (ms) |

    Example Workflows

    See the examples directory for complete workflow JSON files:

    1. Basic Image Generation – Simple text-to-image
    2. Batch Processing – Generate multiple images
    3. Dynamic Model Selection – Auto-select best model
    4. Scheduled Generation – Daily automated images
    5. Video Generation – AI video creation with customizable parameters
    6. ControlNet Edge Detection – Structure-guided generation (coming soon)
    7. ControlNet Pose Transfer – Pose-guided generation (coming soon)

    Output

    Image Generation Output

    #### JSON Output

    {
      "projectId": "ABC123...",
      "modelId": "flux1-schnell-fp8",
      "prompt": "A beautiful sunset...",
      "imageUrls": [
        "https://complete-images-production.s3-accelerate.amazonaws.com/..."
      ],
      "completed": true,
      "jobs": [
        {
          "id": "JOB123...",
          "status": "completed"
        }
      ]
    }
    

    #### Binary Output (when downloadImages = true)

  • image: First generated image
  • image_1: Second image (if multiple)
  • image_2: Third image (if multiple)
  • etc.
  • Video Generation Output

    #### JSON Output

    {
      "projectId": "VID123...",
      "modelId": "video-model-id",
      "prompt": "A cat playing...",
      "videoUrls": [
        "https://complete-videos-production.s3-accelerate.amazonaws.com/..."
      ],
      "completed": true,
      "jobs": [
        {
          "id": "JOB456...",
          "status": "completed"
        }
      ]
    }
    

    #### Binary Output (when downloadVideos = true)

  • video: First generated video
  • video_1: Second video (if multiple)
  • video_2: Third video (if multiple)
  • etc.
  • Binary data includes:

  • Proper MIME type (video/mp4)
  • Filename: sognivideo[projectId]_[index].[ext]
  • Full resolution video data
  • Tips & Best Practices

    1. Network Selection

  • Fast Network:
  • – Uses SOGNI tokens
    – Faster generation (seconds to minutes)
    – Higher cost
    – Best for: Time-sensitive applications

  • Relaxed Network:
  • – Uses Spark tokens
    – Slower generation (minutes to hours)
    – Lower cost
    – Best for: Batch processing, scheduled jobs

    2. Model Selection

    Popular models:

  • flux1-schnell-fp8: Fast, high quality, 4 steps recommended
  • coreml-sogniartistv1_768: Artistic style
  • chroma-v.46-flash_fp8: Fast generation
  • Use “Get All Models” operation to see all available models.

    3. Steps Configuration

  • Flux models: 4-8 steps (optimized for speed)
  • SD models: 15-30 steps (better quality)
  • ControlNet: 20-30 steps (more control)
  • 4. ControlNet Usage

  • Start with strength 0.5 and adjust
  • Use balanced mode for most cases
  • Match ControlNet type to your control image
  • See ControlNet Guide for details
  • 5. Image Download

  • Enable downloadImages to prevent URL expiry
  • URLs expire after 24 hours
  • Binary data is permanent in n8n
  • Recommended for production workflows
  • 6. Timeout Configuration

  • Image – Fast network: 60,000ms (1 minute) usually enough
  • Image – Relaxed network: 600,000ms (10 minutes) recommended
  • Video – Fast network: 120,000ms (2 minutes) minimum
  • Video – Relaxed network: 1,200,000ms (20 minutes) recommended
  • Adjust based on complexity and model
  • 7. Video Generation Tips

  • Frame Count: Start with 30 frames for quick tests, increase for longer videos
  • FPS: Use 30 fps for smooth motion, 10-15 fps for stylized/animated look
  • Resolution: Start with 512×512 for faster generation, increase as needed
  • Format: Currently only MP4 format is supported
  • Models: Look for models with “video”, “animation”, or “motion” in their names
  • Troubleshooting

    “Insufficient funds” Error

    Solution: Add more Spark or SOGNI tokens to your account

    “Model not found” Error

    Solution: Use “Get All Models” to see available models

    “No binary data found” (ControlNet)

    Solution:
    1. Ensure previous node outputs binary data
    2. Check the binary property name
    3. Use “View” in n8n to inspect data

    Workflow Times Out

    Solution:

  • Use relaxed network for slower but more reliable generation
  • Increase timeout in Additional Fields
  • Split large batches into smaller chunks
  • Images Not Downloaded

    Solution:

  • Check downloadImages is enabled
  • Verify network connectivity
  • Check n8n logs for download errors
  • Advanced Usage

    Combining with Other Nodes

    #### Discord Integration

    Sogni Generate โ†’ HTTP Request (Discord Webhook)
    

    #### Google Drive Storage

    Sogni Generate โ†’ Google Drive (Upload File)
    

    #### Social Media Posting

    Sogni Generate โ†’ Twitter/Instagram API
    

    #### Image Processing Pipeline

    Load Image โ†’ Sogni ControlNet โ†’ Post-Processing โ†’ Save
    

    Dynamic Prompts

    Use expressions to generate dynamic prompts:

    {{ "A " + $json.style + " image of " + $json.subject }}
    

    Conditional ControlNet

    Enable ControlNet based on conditions:

    {{ $json.hasControlImage ? true : false }}
    

    API Reference

    Wrapper Library

    This node uses the @sogni-ai/sogni-client-wrapper library. For standalone Node.js usage:

    import { SogniClientWrapper } from '@sogni-ai/sogni-client-wrapper';

    const client = new SogniClientWrapper({ username: 'your-username', password: 'your-password', autoConnect: true, });

    const result = await client.createProject({ modelId: 'flux1-schnell-fp8', positivePrompt: 'A beautiful sunset', network: 'fast', tokenType: 'spark', waitForCompletion: true, });

    See @sogni-ai/sogni-client-wrapper for full API documentation.

    Version History

    v1.2.0 (Current)

  • ๐ŸŽฌ Added full video generation support
  • ๐Ÿ“ฆ Updated @sogni-ai/sogni-client-wrapper to v1.2.0
  • ๐ŸŽฅ MP4 video format support
  • โš™๏ธ Configurable video parameters (frames, FPS, resolution)
  • ๐Ÿ“ฅ Automatic video download as binary data
  • ๐Ÿ” Dedicated video model selection and filtering
  • v1.1.9

  • ๐Ÿ“ Updated Sogni signup copy and highlighted ControlNet positioning
  • v1.1.8

  • ๐Ÿ†• Refreshed installation instructions and Sogni account links
  • ๐Ÿ“š Added references to Sogni platform, docs, and SDK packages
  • v1.1.6

  • โšก Changed default network from “relaxed” to “fast” for quicker generation
  • ๐Ÿ“ Documentation updates
  • v1.1.5

  • ๐Ÿ”ง Minor bug fixes and improvements
  • ๐Ÿ“ Documentation updates
  • v1.1.0-1.1.4

  • โœจ Added full ControlNet support (15 types)
  • ๐Ÿ“ฅ Added automatic image download
  • ๐Ÿ”‘ Enhanced appId auto-generation
  • โš™๏ธ Improved default values
  • ๐Ÿ“š Added ControlNet guide
  • v1.0.0

  • Initial release
  • Basic image generation
  • Model and account operations
  • Size presets support
  • Resources

  • ControlNet Guide – Complete ControlNet usage guide
  • Example Workflows – Ready-to-use workflow examples
  • Sogni AI – Platform overview and product updates
  • Sogni SDK Docs – Official SDK documentation
  • Sogni Docs – Platform guides and API references
  • Integration Guide – Complete integration guide
  • Support

    For issues or questions:
    1. Check this README
    2. Review the ControlNet Guide
    3. Check example workflows
    4. Submit an issue on GitHub

    License

    MIT License – See LICENSE file for details

    Credits

    Built with:

  • @sogni-ai/sogni-client – Official Sogni SDK
  • @sogni-ai/sogni-client-wrapper – Enhanced wrapper library
  • n8n – Workflow automation platform

Ready to generate amazing AI images with ControlNet in your n8n workflows! ๐ŸŽจโœจ