Back to Nodes

Agent700 Agent

Last updated Dec 18, 2025

Agent700 AI integration nodes for n8n workflow automation

421 Weekly Downloads
421 Monthly Downloads

Included Nodes

Agent700 Agent
Agent700 Context Library

Description

Agent700 n8n Custom Nodes

Production-ready custom n8n nodes for integrating with the Agent700 API. These nodes provide seamless authentication, chat interactions, context management, and more.

Table of Contents

  • Installation
  • Authentication
  • Node Documentation
  • Workflow Examples
  • Best Practices
  • Troubleshooting
  • Installation

    Prerequisites

  • n8n installed and running
  • Node.js 18+ and npm
  • Agent700 account credentials
  • Build the Package

    First, build the package from source:

    cd Agent700-prod-nodes
    npm install
    npm run build
    

    This compiles TypeScript to JavaScript in the dist/ folder.

    Manual Installation Methods

    Choose the installation method that matches your n8n setup:

    #### Option 1: Docker Setup (Recommended for Testing)

    If you’re using Docker Compose, you have two options:

    Option A: Volume Mount (Recommended)

    1. Update your docker-compose.yml to mount the built package:

       volumes:
         - ./n8n-data:/home/node/.n8n/data
         - ./Agent700-prod-nodes:/home/node/.n8n/custom/Agent700-prod-nodes
       

    2. Restart your containers:

       docker-compose down
       docker-compose up -d
       

    3. Install dependencies inside the container:

       docker exec  sh -c "cd /home/node/.n8n/custom/Agent700-prod-nodes && npm install --production"
       

    Option B: Copy into Container

    1. Find your n8n container:

       docker ps | grep n8n
       

    2. Copy the built package into the container:

       docker cp Agent700-prod-nodes :/home/node/.n8n/custom/
       

    3. Install dependencies inside container:

       docker exec  sh -c "cd /home/node/.n8n/custom/Agent700-prod-nodes && npm install --production"
       

    4. Restart container:

       docker restart 
       

    #### Option 2: Local n8n Installation (Non-Docker)

    If you have n8n installed locally (not in Docker):

    1. Copy to n8n custom directory:

       # Find your n8n custom directory (usually ~/.n8n/custom)
       cp -r Agent700-prod-nodes ~/.n8n/custom/
       
       # Install production dependencies
       cd ~/.n8n/custom/Agent700-prod-nodes
       npm install --production
       

    2. Set environment variable (if needed):

       export N8NCUSTOMEXTENSIONS=~/.n8n/custom
       

    3. Restart n8n:

       # If running as service
       systemctl restart n8n
       
       # Or if running manually
       n8n start
       

    #### Option 3: Using npm link (For Development)

    For active development with hot reloading:

    1. Build and link your package:

       cd Agent700-prod-nodes
       npm install
       npm run build
       npm link
       

    2. Link in n8n directory:

       # If n8n is installed globally
       cd $(npm root -g)/n8n
       npm link agent700-prod-nodes
       
       # Or if n8n is in a specific directory
       cd /path/to/n8n
       npm link agent700-prod-nodes
       

    3. Restart n8n

    Note: After making code changes, rebuild (npm run build) and restart n8n for changes to take effect.

    Verify Installation

    After installation, verify everything works:

    1. Check nodes appear in n8n UI:
    – Open n8n interface (typically http://localhost:5678)
    – Create a new workflow
    – Search for “Agent700” – you should see all nodes available:
    – Agent700 Agent
    – Agent700 Context Library

    3. Check n8n logs for errors:

       # Docker
       docker logs 
       
       # Local
       n8n start --log-level=debug
       

    Troubleshooting Installation

    Nodes don’t appear:

  • Verify dist/ folder exists and contains .node.js files
  • Check package.json has correct n8n.nodes array
  • Ensure file permissions are correct (Docker: check container user permissions)
  • Restart n8n after installation
  • Check n8n logs for specific error messages
  • Dependencies missing:

  • Run npm install --production in the custom nodes directory
  • For Docker: docker exec sh -c "cd /home/node/.n8n/custom/Agent700-prod-nodes && npm install --production"
  • Build errors:

  • Ensure TypeScript is installed: npm install
  • Check for TypeScript errors: npm run build
  • Verify Node.js version is 18+
  • Authentication

    How Authentication Works

    All Agent700 nodes authenticate using an App Password configured directly in the node parameters. Nodes automatically handle authentication on each request – no manual token copying needed!

    Setting Up Authentication

    1. Get your App Password from the Agent700 web interface
    – Format: appa7 followed by 32 characters
    – Example: appa712345678901234567890123456789012

    2. Configure in Node Parameters:
    Base URL: https://api.agent700.ai (default)
    App Password: Your app password token (required)
    – Nodes automatically use this to obtain access tokens

    Authentication Flow

    1. Node sends App Password to /api/auth/app-login
    2. API returns an access token
    3. Node uses Bearer token for all subsequent API calls
    4. Token is obtained fresh for each execution

    Node Documentation

    1. Agent700 Agent

    Purpose: Send messages to agents and get structured responses

    Key Features:

  • Auto-authenticates using App Password
  • Agent ID via manual entry
  • Simplify output option for cleaner responses
  • Full n8n UX guidelines compliance
  • Parameters:

  • Base URL: https://api.agent700.ai (default)
  • App Password (required): Your Agent700 app password token
  • Resource: Chat (single resource)
  • Operation: Send Message
  • Agent ID (optional): Enter the Agent UUID manually
  • Message (required): Your message to send
  • Simplify (default: true): Return simplified output with key fields only
  • Output (Simplified):

    {
      "response": "Agent response",
      "finish_reason": "stop",
      "scrubbed_message": "...",
      "error": null,
      "prompt_tokens": 100,
      "completion_tokens": 50
    }
    

    Output (Full):
    Returns complete API response with all fields.

    Example:

    1. Add "Agent700 Agent" node
    2. Enter App Password
    3. Enter Agent ID (UUID from Agent700 web interface)
    4. Enter message: "What is AI?"
    5. Enable Simplify for cleaner output (optional)
    6. Execute
    

    2. Agent700 Context Library

    Purpose: Manage alignment data (key-value storage) with encryption at rest

    Key Features:

  • Full CRUD operations following n8n vocabulary
  • Pattern matching and query operations
  • JSON construction from patterns
  • Auto-authenticates using App Password
  • Resource: Entry

    Operations:

  • Get: Retrieve a single entry by key
  • Get Many: List all entries
  • Create: Create a new entry
  • Update: Update an existing entry (with optional key renaming)
  • Upsert: Create or update an entry (upsert)
  • Delete: Delete an entry (returns { deleted: true, key })
  • Query: List key/value pairs matching a pattern
  • Query + Construct: Construct JSON from pattern matches using a template
  • Example (Upsert):

    1. Add "Agent700 Context Library" node
    2. Enter App Password
    3. Resource: Entry
    4. Operation: "Upsert"
    5. Key: "user_preference"
    6. Value: {"theme": "dark_mode"}
    7. Execute
    

    Example (Delete):

    1. Operation: "Delete"
    2. Key: "old_key"
    3. Returns: { "deleted": true, "key": "old_key" }
    

    Workflow Examples

    Example 1: Simple Chat Workflow

    Use Case: One-off questions, simple Q&A

    Steps:
    1. Manual Trigger → Start workflow
    2. Agent700 Agent → Send message
    – Enter App Password
    – Select Agent ID
    – Message: “What is machine learning?”
    3. Display Response → Show result

    Node Flow:

    Manual Trigger → Agent700 Agent → Display Response
    

    When to Use:

  • Quick questions
  • Single message interactions
  • No conversation history needed
  • Example 2: Chat with Conversation Context

    Use Case: Multi-turn conversations, follow-up questions

    Note: Conversation context feature is not available in v2. For multi-turn conversations, manually include previous messages in your prompt or use the Context Library to store conversation history.

    Steps:
    1. Manual Trigger → Start workflow
    2. Agent700 Agent → First message
    – Enter App Password
    – Select Agent ID
    – Message: “Explain quantum computing”
    3. Agent700 Agent → Follow-up
    – Include previous context in message
    – Message: “Based on your previous explanation, how does it differ from classical computing?”
    4. Display Response → Show result

    Node Flow:

    Manual Trigger → Agent700 Agent → Agent700 Agent (with context) → Display
    

    Example 3: URL Evaluation Workflow

    Use Case: Content analysis, privacy policy scanning, URL validation

    Steps:
    1. Manual Trigger → Start workflow
    2. Get URLs → Retrieve URLs (from Context Library or input)
    3. Split in Batches → Process one at a time
    4. Agent700 Agent → Evaluate each URL
    – Message: “Analyze this URL for privacy concerns: {{$json.url}}”
    5. Save Results → Store in Context Library
    6. Aggregate → Combine all evaluations

    Node Flow:

    Trigger → Get URLs → Split → Chat → Save → Aggregate
    

    Advanced Version:

    Trigger → Context Library (List) → Loop → Chat → Context Library (Upsert) → Summary
    

    Example 4: Context Library Management Workflow

    Use Case: Dynamic context injection, data-driven conversations

    Steps:
    1. Manual Trigger → Start workflow
    2. Agent700 Context Library → List all data
    – Operation: “List All Data”
    3. Process Data → Filter/transform as needed
    4. Agent700 Context Library → Upsert new data
    – Operation: “Upsert Data”
    – Key: “user_context”
    – Value: “{{$json.processed_data}}”
    5. Agent700 Agent → Use context in conversation
    – Message: “Based on this context: {{$json.user_context}}, answer my question”

    Node Flow:

    Trigger → Context Library (List) → Process → Context Library (Upsert) → Chat
    

    Example 8: Error Handling Workflow

    Use Case: Production workflows, reliability-critical applications

    Steps:
    1. Manual Trigger → Start workflow
    2. Agent700 Agent → Attempt chat
    3. Error Handler → Catch errors
    4. Retry Logic → Retry on failure (with delay)
    5. Fallback Response → Use cached/default response if all retries fail

    Node Flow:

    Trigger → Chat → Error Handler → Retry → Fallback
    

    Implementation Tips:

  • Use “Continue on Fail” option in nodes
  • Implement retry with exponential backoff
  • Cache successful responses for fallback
  • Example 9: Batch Processing Workflow

    Use Case: Bulk operations, data processing pipelines

    Steps:
    1. Manual Trigger → Start workflow
    2. Get Items → Retrieve items to process (from Context Library, database, etc.)
    3. Split in Batches → Process in batches
    4. Agent700 Agent → Process each item
    – Message: “Process this item: {{$json.item}}”
    5. Aggregate Results → Combine all results
    6. Save → Store aggregated results

    Node Flow:

    Trigger → Get Items → Split → Chat (per item) → Aggregate → Save
    

    Performance Tips:

  • Process in parallel batches
  • Use Continue on Fail for individual items
  • Aggregate results efficiently
  • Best Practices

    When to Use Which Node

  • Agent Node: Regular chat interactions, sending messages to agents
  • Context Library Node: Data storage, context injection, pattern matching
  • Authentication Management

    1. Use App Passwords
    – Required for all nodes
    – Can be revoked individually
    – Better audit trail
    – Format: appa7 + 32 characters

    2. Store App Passwords Securely
    – Use n8n’s parameter encryption
    – Never hard-code in workflows
    – Rotate app passwords regularly
    – Consider using n8n environment variables for sensitive values

    3. One App Password Per Environment
    – Separate app passwords for dev/staging/prod
    – Use different Agent IDs per environment

    Error Handling

    1. Enable Continue on Fail
    – For batch processing
    – When individual failures shouldn’t stop workflow

    2. Implement Retry Logic
    – For transient errors (network, timeouts)
    – Use exponential backoff

    3. Log Errors Properly
    – Use n8n’s error handling
    – Store error details in Context Library for debugging

    Performance Tips

    1. Message Context
    – Include previous messages manually in prompts when needed
    – Use Context Library to store conversation history
    – Limit context size to avoid token limits

    2. Batch Processing
    – Process items in parallel when possible
    – Use Split in Batches node
    – Aggregate results efficiently

    3. Caching
    – Cache agent configs in Context Library
    – Cache frequently accessed data
    – Use workflow static data for session management

    Security

    1. SSL/TLS Configuration
    – Use “Strict SSL” in production
    – Only disable for development/testing

    2. Token Management
    – Tokens auto-refresh via credentials

    3. Data Privacy
    – Be careful with PII in messages
    – Use Context Library encryption features
    – Review scrubbed_message in responses

    Troubleshooting

    Common Issues

    #### Authentication Fails

    Symptoms:

  • “Authentication failed” errors
  • 401 Unauthorized responses
  • “App login did not return accessToken” errors
  • Solutions:
    1. Verify App Password is correct (format: appa7 + 32 chars)
    2. Check API Base URL is correct (https://api.agent700.ai)
    3. Verify App Password is valid in Agent700 web interface
    4. Try creating a new app password
    5. Check network connectivity
    6. Ensure App Password parameter is set in node (not empty)

    #### Node Not Appearing

    Symptoms:

  • Can’t find Agent700 nodes in n8n
  • Solutions:
    1. Verify installation path is correct (see Installation section)
    2. Check dist/ folder exists and contains compiled .node.js files
    3. Verify package.json n8n.nodes array matches actual file paths
    4. Check file permissions (Docker: ensure container user can read files)
    5. Restart n8n after installation
    6. Check n8n logs for errors: docker logs or n8n start --log-level=debug
    7. Verify TypeScript compiled successfully (npm run build)
    8. For Docker: Ensure volume mount path is correct in docker-compose.yml
    9. Install dependencies: npm install --production in the custom nodes directory

    #### Agent ID Not Found

    Symptoms:

  • “Agent not found” errors
  • Solutions:
    1. Verify the Agent UUID is correct (copy from Agent700 web interface)
    2. Verify App Password is correct and has access to the agent
    3. Check you have access to agents in Agent700 account
    4. Verify API Base URL is correct

    #### API Errors

    Symptoms:

  • 4xx/5xx HTTP errors
  • “API Error” messages
  • Solutions:
    1. Check error details in node output
    2. Verify Agent UUID is correct
    3. Check API rate limits
    4. Review API documentation for endpoint changes
    5. Enable Continue on Fail to see detailed errors

    #### SSL/TLS Issues

    Symptoms:

  • Certificate errors
  • Connection refused
  • Solutions:
    1. Use “Strict SSL” in production
    2. Check API Base URL uses HTTPS
    3. Verify certificate is valid
    4. Only use “Allow Self-Signed” for development

    Debugging Tips

    1. Check Node Output
    – Look at json output for error details
    – Check status field for operation results

    2. Enable Continue on Fail
    – See what errors occur
    – Don’t stop workflow on first error

    3. Use Context Library for Logging
    – Store debug information
    – Track workflow execution

    4. Test Individual Nodes
    – Test each node separately
    – Verify credentials work
    – Check API connectivity

    Getting Help

    1. Check n8n Logs
    – Look for error messages
    – Check execution logs

    2. Review API Documentation
    – Agent700 API docs
    – n8n node development docs

    3. Test with Simple Workflow
    – Start with basic chat
    – Add complexity gradually

    Workflow Templates

    Ready-to-use workflow templates are available in the workflows/ folder:

  • simple-chat.json – Basic chat workflow
  • chat-with-context.json – Conversation context example
  • url-evaluation.json – URL evaluation workflow
  • context-library-management.json – Context Library operations
  • error-handling.json – Error handling example
  • batch-processing.json – Batch processing workflow
  • Note: Workflow templates from v1 may need updates for v2:

  • Replace credential references with App Password parameter
  • Update node type names (agent700Chatagent700Agent)
  • Update operation names in Context Library node
  • To import:
    1. In n8n, go to WorkflowsImport from File
    2. Select the JSON file from workflows/ folder
    3. Configure App Password in each node
    4. Update Agent IDs if needed
    5. Execute and customize

    License

    MIT License – see LICENSE file for details.

    Support

  • Check n8n documentation for general n8n issues
  • Review Agent700 API documentation for API-specific issues
  • Create issues in the repository for bugs or feature requests